Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

Elin Säwén • Eine Huttunen • Xue Zhang •
Zhennai Yang - Göran Widmalm

Received: 21 January 2010/Accepted: 25 March 2010/Published online: 13 April 2010
© Springer Science+Business Media B.V. 2010

Abstract

The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESYHSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: $\rightarrow 3)[\alpha-\mathrm{D}$-Glc $p-(1 \rightarrow 4)]-\beta-\mathrm{D}-\mathrm{Gal} p-(1 \rightarrow 4)-\beta$-D-Glc $p-(1 \rightarrow 4)$ $[\beta$-D-Galf-($1 \rightarrow 6$)]- β-D-Glcp- $(1 \rightarrow 6)$ - β-D-Glcp- $(1 \rightarrow, \quad$ in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the

[^0]repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in $\mathrm{M}_{\mathrm{w}}=62 \mathrm{kDa}$, corresponding to 64 repeating units in the EPS.

Keywords Carbohydrates • Polysaccharide •
Biopolymer • NMR spectroscopy • Absolute configuration Dynamic light scattering

Abbreviations

EPS Exopolysaccharide
TILT Time-domain increments linked together

Introduction

Streptococcus thermophilus is a major dairy starter used mainly in the production of yogurt and some varieties of cheese (Delorme, 2008). Traditional yogurt production includes the fermentation of milk with a mix of thermophilic cultures consisting of strains of S. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. However, the current yogurt industrial practice prefers the use of S. thermophilus alone, since it results in a mild flavor of the final product (Purwandari et al. 2007). In addition to flavor formation and the pH lowering effect, S. thermophilus plays a major role in the creation of yogurt and cheese texture through in situ exopolysaccharide (EPS) production. The EPS-producing starter cultures have been shown to improve the texture and sensory characteristics of yogurt (mouthfeel, shininess, clean cut, ropiness and creaminess) (Purwandari et al. 2007; Folkenberg et al. 2006). The use of an EPS-producing S. thermophilus strain improved the functional properties of low-fat or part-skim Mozzarella cheese by increasing the moisture content and improving
the melting properties of the product (Broadbent et al. 2003). However, the final textural characteristics of yogurts are strongly dependent on physical and structural properties of the EPS, such as type (capsular or ropy), degree of ropiness, sugar composition and degree of branching (Purwandari et al. 2007).

Compositional and structural analyses of the EPSs produced by lactic acid bacteria (LAB) revealed a large variation in chemical composition, monomer ratio, and molecular structure of the repeating unit depending on the particular strain considered. In addition, the LAB EPSs differed in the attachment site of the side-chain, as well as the monosaccharides of the side-chain. The EPSs of S. thermophilus are neutral or polyanionic heteromers primarily composed of D-galactose, D-glucose, and L-rhamnose, but also N-acetyl-D-galactosamine, acetylated D-galactose, D-ribose, and a nononic acid were discovered in these molecules.

The first structural characterization of an EPS was that produced by S. thermophilus strains (CNCMI 733, CNCMI 734 and CNCMI 735), and it was found to be composed of tetrasaccharide repeating units of D-galactose, D-glucose, and N -acetyl-D-galactosamine (Doco et al. 1990). EPSs with identical repeating unit structure to that of the CNCMI strains have later been shown to be produced by some other S. thermophilus strains: Sfi6 (Stingele et al. 1996), IMDO 01, IMDO 02, IMDO 03, NCFB 859 and 21 (Marshall et al. 2001a), SFi20 (Navarini et al. 2001) and LY03 (Degeest et al. 2001). Another EPS with a tetrasaccharide repeating unit of D-galactose and D-glucose was produced by the strains SFi39 (Lemoine et al. 1997), SY89, SY102 (Marshall et al. 2001a), STD and CH101 (De Vuyst et al. 2003). Strains SFi12 (Lemoine et al. 1997) and S3 (Faber et al. 2001) produced EPSs with hexasaccharide repeating units, the former containing d-galactose, d-glucose, and L-rhamnose, and the latter d-galactose, Lrhamnose and acetylated d-galactose. Furthermore, three different kinds of heptasaccharide repeating units of the EPSs were indicated: (1) a heptasaccharide repeating unit of D-glucose, D-galactose and L-rhamnose produced by the strain EU20 (Marshall et al. 2001b), (2) a branched heptasaccharide repeating unit of d-galactose and l-rhamnose with a disaccharide side-chain produced by the strains OR901 (Bubb et al. 1997), Rs and Sts (Faber et al. 1998) and ST 111 (Vaningelgem et al. 2004), and (3) a complex heptasaccharide repeating unit of d-glucose, D-galactose, D-ribose, N-acetyl- D-galactosamine, and an open chain nononic acid produced by the strain 8 S (Faber et al. 2002a; Faber et al. 2002b). Not only does the repeating unit structure of S. thermophilus EPS vary considerably, but also the variability in the molecular mass of structurally identical polymers has been reported (Faber et al. 1998).

Previously we presented a branched pentasaccharide repeating unit of D-galactose and D-glucose with a trisaccharide side-chain of the EPS produced by S. thermophilus THS (Nordmark et al. 2005). The high viscosity of this EPS was possibly explained by the particular side-chain composition of the polymer. In the present study, S. thermophilus strain ST1 was found to produce a viscous EPS when grown in skim milk. In order to further understand the viscosity properties of the EPS of strain ST1, the polysaccharide was studied structurally by NMR spectroscopy, showing a new EPS structure with a hexasaccharide repeating unit of d-galactose and d-glucose. The branching pattern present in the repeating unit of the EPS may also in this case contribute to the high viscosity of the skim milk culture. The determination of the primary structure of a polysaccharide includes analysis of sugar components, their absolute configuration, ring-size of monosaccharides, their anomeric configuration, sequence of sugar residues and substituents and their location if present. In particular, all aspects of the structural analysis of the ST1 EPS were carried out by NMR spectroscopy. In addition, the molecular mass of the polymer determined by NMR translational diffusion measurements was complemented with a determination based on dynamic light scattering.

Materials and methods

Growth of the organism
Streptococcus thermophilus ST1, a strain from the Center of Agro-food Technology, Northeast Agricultural Research Center of China (NARCC, Changchun, China), was used as the EPS-producing strain throughout this study. The ST1 strain culture was prepared by inoculating a loopful of freeze-drying culture into 5 mL reconstituted skim milk powder at 11% (w/v, Valio Ltd., Finland) and incubated at $42^{\circ} \mathrm{C}$ for 16 h . For exopolysaccharide isolation, the strain ST1 was propagated twice, in 100 and 500 mL skim milk, at $42^{\circ} \mathrm{C}$ for 8 h with a 3% inoculum.

Isolation and purification of the exopolysaccharide
The fermentation broth (490 mL) was stirred in 4% (w/v) trichloroacetic acid (Merck, Darmstadt, Germany) for 2 h at room temperature, and then left at $4^{\circ} \mathrm{C}$ overnight. Cells and precipitated proteins were removed by centrifugation at $10,000 \mathrm{rpm}$ for $45 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The supernatant was filtered through an AcroCap filter $(0.45 \mu \mathrm{~m}$, Pall Gelman, USA) and one volume of cold absolute ethanol was added gradually with a pear-shaped funnel in order to precipitate EPS ($4 \mathrm{~h}, 4^{\circ} \mathrm{C}$). The supernatant and the precipitating EPS
were kept at $4^{\circ} \mathrm{C}$ overnight. After centrifugation ($10,000 \mathrm{rpm}, 45 \mathrm{~min}, 4^{\circ} \mathrm{C}$), the EPS precipitates were washed with 50% ethanol 3 times and dissolved in distilled water. The aqueous solution of the EPS was again filtered through an AcroCap filter $(0.45 \mu \mathrm{~m})$ and lyohpilized on a DURA-Dry freeze-dryer (FTS Systems Inc., Stone Ridge, NY, USA). Part of the material (10 mg) was dissolved and transferred into a cellulose dialysis membrane with a nominal MWCO of 12,000-14,000 (Cellu Sep T3, Membrane Filtration Products Inc., San Antonio, TX, USA) and dialyzed in 5 L of distilled water for 2 days at $4^{\circ} \mathrm{C}$, water being changed twice a day. After dialysis the EPS was used for structural analysis.

The uniformity of the EPS material was further checked by size exclusion chromatography using a column ($75 \times 1.5 \mathrm{~cm}$) of Bio-Gel P-10 polyacrylamide gel (exlusion limit $20 \mathrm{kDa}, 200-400$ mesh, Bio-Rad Laboratories, Richmond, CA, USA). A sample (1.5 mg) was loaded onto the column and eluted with $0.05 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ (Riedel-de Haën AG, Seelze, Germany) with UV monitoring at 280 nm (Econo UV monitor, Model EM1, Richmond, CA, USA). The presence of sugar in the fractions was tested qualitatively with a Molish test (Miller and Neuzil 1982).

Absolute configuration determination

The EPS (0.7 mg) was hydrolyzed with $200 \mu \mathrm{~L}$ of 2 M trifluoroacetic acid at $120^{\circ} \mathrm{C}$ for 90 min and the solvent was evaporated under a stream of dry air. The hydrolyzed EPS and 2 mg each of the reference samples (D-Glc, L-Glc, D-Gal and L-Gal) were treated with (S)-(+)-2-methylbutyric anhydride (Sigma-Aldrich, Inc.) ($100 \mu \mathrm{~L}$) and pyridine $(100 \mu \mathrm{~L})$ and were incubated at $120^{\circ} \mathrm{C}$ for 4 h . The reagents were evaporated under a stream of dry air and toluene was added and evaporated three times. The samples were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and were extracted twice with aqueous $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ followed by water $(2 \mathrm{~mL})$. The organic phase was concentrated with a stream of dry air and dried under reduced pressure. The samples were dissolved in acetone- d_{6}.
${ }^{1} \mathrm{H}$ NMR spectra of the (S)-(+)-2-methylbutyryl (SMB) derivatives were recorded at $25^{\circ} \mathrm{C}$ (York et al. 1997). Chemical shifts were measured relative to internal acetone$d_{5}(\delta 2.050) .1 \mathrm{D}$ spectra were recorded with 64 k data points over a spectral width of 10 ppm at 700 MHz . The spectra were recorded with 64 scans and a repetition time of 6.7 s was used. Zero-filling to 128 k points and an exponential weighting function was applied prior to Fourier transformation for all samples; for the reference samples a line-broadening of 0.3 Hz was used and for the hydrolyzed EPS sample a line-broadening of 0.5 Hz was applied.

NMR spectroscopy
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift assignments of the EPS from ST1 were performed in $\mathrm{D}_{2} \mathrm{O}(4 \mathrm{mg}$ in 0.55 mL$)$ at $25^{\circ} \mathrm{C}$ on three different spectrometers: a Varian INOVA 600 MHz spectrometer equipped with a 5 mm PFG triple resonance probe, a Varian INOVA 900 MHz spectrometer equipped with a 5 mm Cold Probe and a Bruker AVANCE III 700 MHz spectrometer with dual receivers equipped with a 5 mm TCI Z-Gradient CryoProbe. ${ }^{1} \mathrm{H}$ chemical shifts were referenced to internal TSP $(\delta 0.00)$ and ${ }^{13} \mathrm{C}$ chemical shifts were referenced to external dioxane in $\mathrm{D}_{2} \mathrm{O}(\delta 67.40)$. The chemical shifts were compared to those of the corresponding monosaccharides (Jansson et al. 1989; Baumann et al. 1992).
${ }^{1} \mathrm{H}$ NMR assignments were performed using ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ TOCSY experiments recorded at 700 MHz over 5 ppm with $2,048 \times 256$ points in $\mathrm{F} 2 \times \mathrm{F} 1$, respectively, and 16 scans per t_{1}-increment using the States-TPPI method. An MLEV-17 spin-lock ($\gamma \mathrm{B}_{1} / 2 \pi=9.6 \mathrm{kHz}$) was used with five different mixing times, viz., $10,30,60,90$ and 110 ms . Zero-filling was performed to $4,096 \times 4,096$ points. Prior to Fourier transformation a 90° shifted squared sine-bell function was applied in both dimensions.

A PANSY experiment (Kupče et al. 2006) in which a ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-TOCSY experiment with 1.5 s presaturation was performed with a 120 ms DIPSI spin-lock ($\gamma \mathrm{B}_{1} / 2 \pi=$ 10 kHz) during which a ${ }^{13} \mathrm{C}$ experiment was recorded on a parallel receiver. The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{TOCSY}$ experiment was recorded with the States-TPPI method over 4 ppm with $2,048 \times 64$ points in $\mathrm{F} 2 \times \mathrm{F} 1$, respectively; eight scans per t_{1}-increment were used. Prior to Fourier transformation zero-filling was carried out to $8,192 \times 4,096$ points and a shifted squared sine-bell function was applied in both dimensions. The ${ }^{13} \mathrm{C}$ experiment was recorded during the 120 ms mixing time over a region of 200 ppm with 8,192 points and was zero-filled to 131,072 points; forward linear prediction using all points was applied. An exponential window function with a line broadening factor of 9 Hz was applied.

A ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{H} 2 \mathrm{BC}$ experiment (Petersen et al. 2006) was recorded at 700 MHz with a spectral width of 8 ppm in the direct dimension and 80 ppm in the indirect dimension with $1,024 \times 512$ points and 128 scans per t_{1}-increment using the echo/antiecho method. A constant time delay of 22 ms was employed for ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ evolution. The third-order low-pass J-filter was set for $140<{ }^{1} J_{\mathrm{C}, \mathrm{H}}<170 \mathrm{~Hz}$. Zerofilling to $2,048 \times 2,048$ points was performed. A 90° shifted squared sine-bell function was applied in F2 and a 60° shifted squared sine-bell function was applied in F 1 prior to Fourier transformation. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{H} 2 \mathrm{BC}$ spectrum was processed in magnitude mode.
${ }^{13} \mathrm{C}$ NMR chemical shifts were assigned using a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC experiment recorded with the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ NO-ESY- ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC-TILT (Time-domain increments linked together) pulse sequence at 900 MHz . A spectral width of 4.4 ppm was used for ${ }^{1} \mathrm{H}$ and a 70 ppm spectral width was used for ${ }^{13} \mathrm{C}$. The experiment was recorded with 650×128 points and 8 scans per t_{1}-increment. Zero-filling to $2,048 \times 2,048$ was performed and a Gaussian function was applied prior to Fourier transformation.

To assign multiplicities for the signals a multiplicityedited ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC experiment was recorded at 700 MHz with $1,024 \times 256$ points and 128 scans per t_{1} increment over a spectral region of 10 ppm for ${ }^{1} \mathrm{H}$ and 80 ppm for ${ }^{13} \mathrm{C}$ employing the echo/antiecho method. Adiabatic pulses were used for inversion in F2. Prior to Fourier transformation zero-filling to $2,048 \times 2,048$ points was performed and 90° shifted squared sine-bell functions were applied in both dimensions.

For inter-residue correlations ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ and ${ }^{1} \mathrm{H}$, ${ }^{1} \mathrm{H}$-NOESY experiments were used. The gradient selected ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMBC experiment was recorded at 700 MHz , and processed in magnitude mode. A spectral region of 10 ppm in the direct dimension and 80 ppm in the indirect dimension with $4,096 \times 256$ points and 128 scans per $\mathrm{t}_{1^{-}}$ increment was used. A 65 ms evolution time was used. Zero-filling was performed to $16,384 \times 4,096$ points and sine-bell functions were applied prior to Fourier transformation in both dimensions. The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-NOESY experiment was recorded at 600 MHz with a spectral region of 2.5 ppm and $1,746 \times 128$ points and 32 scans per $\mathrm{t}_{1^{-}}$ increment. A mixing time of 100 ms was used; during the mixing time a zero-quantum filter was applied with a 50 ms simultaneous 180° adiabatic WURST-pulse swept over 14 kHz and a gradient pulse of $1.8 \mathrm{G} \mathrm{s}^{-1}$. Prior to Fourier transformation zero-filling was performed to $2,048 \times 2,048$ points and a 90° shifted squared sine-bell function was applied in both dimensions.

To resolve ambiguities due to spectral overlap in the 2D ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-NOESY spectrum, tilted projections of a threedimensional gradient-enhanced ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-NOESY- ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC spectrum (Kupče and Freeman 2005; Kupče et al. 2005) were recorded at 900 MHz with tilt angles $\alpha=+15$ and $\alpha=-15^{\circ}$. Spectral regions of 4.4 ppm in $\mathrm{F} 2,70 \mathrm{ppm}$ in F 1 and $16,000 \mathrm{~Hz}$ in the mixed plane F^{*} were used and the experiment was recorded with 650×128 points in F2 \times F1, respectively; 54 scans per increment was recorded. A 55 ms mixing time was used in the NOESY part. Prior to Fourier transformation zero-filling was performed to $2,048 \times 2,048$ points and a 90° shifted squared sine-bell function was applied in both dimensions.

The reference in the tilted projections was set from calculated frequencies according to Eqs. 1 and 2, where f_{H} is the ${ }^{1} \mathrm{H}$ frequency in Hertz from a $1 \mathrm{D}{ }^{1} \mathrm{H}$-spectrum and f_{C}
is the ${ }^{13} \mathrm{C}$ frequency in Hertz from the pure HSQC experiment.
$f(+)=f_{\mathrm{H}} \cos \alpha+f_{\mathrm{C}} \sin \alpha$
$f(-)=f_{\mathrm{H}} \cos \alpha-f_{\mathrm{C}} \sin \alpha$
The pure frequencies f_{H} and f_{C} were derived from measurements made in the positively tilted plane $f(+)$ and the negatively tilted plane $f(-)$ according to Eqs. 3 and 4.
$f_{\mathrm{H}}=[f(+)+f(-)] / 2 \cos \alpha$
$f_{\mathrm{C}}=[f(+)-f(-)] / 2 \sin |\alpha|$
Translational diffusion measurements were made at $25^{\circ} \mathrm{C}$ with a sample concentration of $0.6 \mathrm{mg} / \mathrm{mL}$. The experiment was repeated 5 times. A pulsed field gradient spin-echo experiment (PFG-LED) was used with a fixed diffusion time and PFGs increasing linearly over 32 steps (Damberg et al. 2001). The pulsed field gradients were calibrated using a doped water sample $\left(1 \% \mathrm{H}_{2} \mathrm{O}\right.$ in $\mathrm{D}_{2} \mathrm{O}+1 \mathrm{mg} / \mathrm{mL}_{\mathrm{GdCl}}^{3}$) and a literature value of $D_{\mathrm{t}}=$ $1.90 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for the HDO diffusion coefficient in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ (Mills 1973). The molecular mass was calculated from the following relationship (Viel et al. 2003).
$D_{\mathrm{t}}=8.2 \times 10^{-9} M_{\mathrm{W}}^{-0.49}$
The measured diffusion coefficients were corrected with a factor of 1.053 for using $27^{\circ} \mathrm{C}$ in the calculations.

Dynamic light scattering
Dynamic light scattering measurements of the hydrodynamic radius were performed at $25^{\circ} \mathrm{C}$ on an ALV/CGS-3 instrument with a detection angle of 150° using a filtered sample of the ST1 EPS in $\mathrm{D}_{2} \mathrm{O}$ with a concentration of $0.6 \mathrm{mg} / \mathrm{mL}$. Ten measurements were performed for 30 s each and presented as autocorrelation functions. The data were processed with a distribution function fit from the manufacturer's software. The translational diffusion was calculated with the Stokes-Einstein relationship and the molecular mass was calculated as described above for NMR translational diffusion measurements.

Results and discussion

The exopolysaccharide produced by Streptococcus thermophilus ST1 in reconstituted skimmed milk was isolated and purified by 50% ethanol precipitation followed by dialysis in water. The uniformity of the EPS sample ($\mathrm{M}_{\mathrm{w}}>20 \mathrm{kDa}$) was confirmed by size exclusion chromatography. The preparation of the EPS in $\mathrm{D}_{2} \mathrm{O}$ for NMR

Fig. $1{ }^{1} \mathrm{H}$ NMR spectrum at 700 MHz of the EPS from ST 1 in $\mathrm{D}_{2} \mathrm{O}$ with presaturation of the HDO resonance
analysis gave a highly viscous sample. However, the quality of the NMR spectra at $25^{\circ} \mathrm{C}$ was still very high which facilitated further analysis and structural studies of the EPS. The ${ }^{1} \mathrm{H}$ NMR spectrum of the EPS (Fig. 1) showed resonances between 3.3 and 5.1 ppm . There are six resonances in the region for anomeric protons, in the present case between 4.5 and 5.1 ppm ; the remaining resonances are all present within $<1 \mathrm{ppm}$ emphasizing the well-known fact that carbohydrates are notorious for their limited spectral dispersion.

The next step in the structural analysis employed a PANSY NMR experiment (Kupče et al. 2006) in which a ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-TOCSY experiment was carried out in parallel with the acquisition of the FID from a $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR experiment. The isotropic mixing time in the TOCSY experiment was 120 ms , sufficiently long to identify most ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ correlations for a monosaccharide. Six spin-systems originating from the anomeric protons were present in the EPS (Fig. 2a). Resonances from the different sugar residues are denoted by $\mathbf{A}-\mathbf{F}$ starting from the anomeric proton having the highest chemical shift. The acquisition of a $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum is essential, albeit not obligatory, in structural analysis of polysaccharides since non protonbearing carbons may be present at quite different ${ }^{13} \mathrm{C}$ chemical shifts. In the present case the ${ }^{13} \mathrm{C}$ resonances were only observed in the spectral region $60-110 \mathrm{ppm}$ (Fig. 2b). These results indicate that the EPS is built of repeating units consisting of six sugar residues, i.e., hexasaccharide repeating units.

A ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR experiment in conjunction with its multiplicity-edited variant confirmed that six crosspeaks were present in the anomeric region (Fig. 3a) and that the number of cross-peaks in the region for methene and methylene groups (Fig. 3b) indicated that the sugars were six-carbon residues, i.e., hexoses. The four resonances between 4.5 and 4.7 ppm from anomeric protons all had large ${ }^{3} J_{\mathrm{H} 1, \mathrm{H} 2}$ coupling constants of 7.5 Hz indicative

Fig. 2 Spectra resulting from a PANSY NMR experiment that utilizes dual receivers. A ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-TOCSY experiment carried out with a 120 ms isotropic mixing time (a). During the spin-lock a separate ${ }^{13} \mathrm{C}$ experiment with proton decoupling was acquired (b)
an anti-periplanar arrangement between the H 1 and H 2 protons in these sugar residues, as e.g. in β-linked gluco- or galacto-pyranosides but not in α - or β-linked manno-pyranosides. The residues having their anomeric protons at δ_{H} 4.92 and 5.06 were both unresolved but the width at half peak-height indicated that their values were smaller and much smaller, respectively.

In structural analysis of glycans the determination of constituent sugar components is usually carried out by chromatographic methods. In addition, the absolute configuration of the sugar residues, i.e. the $\mathrm{D}-$ or L -configuration, is subsequently determined in a separate procedure, also employing chromatographic methods, by separation of diastereomers. In the present study we determine the sugar components, their absolute configuration and their relative proportions of the ST1 EPS by ${ }^{1} \mathrm{H}$ NMR spectroscopy using SMB, (S)-(+)-2-methylbutyryl, derivatives of the constituent sugars as devised by York et al. (1997). The ST1 EPS was hydrolyzed and peracylated using SMB anhydride. After workup the derivatized material was dissolved in acetone- d_{6} for ${ }^{1} \mathrm{H}$ NMR analysis. Derivatized D- and l-sugars of monosaccharides which have different ${ }^{1} \mathrm{H}$ NMR chemical shifts (since they are diastereomers) were prepared as reference compounds. ${ }^{1} \mathrm{H}$ resonances in the spectral region $6.0-6.5 \mathrm{ppm}$ were indicative of the sugars present and their absolute configurations. The ${ }^{1} \mathrm{H}$ NMR spectrum of the material from the ST1 EPS (Fig. 4a)

Fig. $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC NMR spectrum of the EPS from ST1 showing (a) the anomeric region and (b) the region for ring and hydroxymethyl atoms. Correlations for methine groups $\left(\delta_{\mathrm{C}}>69.7\right)$ are shown in black and for methylene groups ($\delta_{\mathrm{C}}<69.7$) in red (spectrum edited by information from a multiplicity-edited experiment)
showed a mixture of compounds that were identified by comparison to the reference ${ }^{1} \mathrm{H}$ spectra of derivatized $\mathrm{D}-$ galactose (Fig. 4b) and of d-glucose (Fig. 4c). ${ }^{1} \mathrm{H}$ spectra of the l-galactose and of L-glucose derivatives showed chemical shift differences to that of the ST1 EPS derivatized material. Integration of ${ }^{1} \mathrm{H}$ resonances from d-glucose vs. D-galactose between 6.0 and 6.5 ppm showed a relative ratio of 3.7:2. Thus, this NMR analysis demonstrates that d-glucose and D-galactose are constituents of the ST1 EPS and indicate that they are present in a relative ratio $\sim 4: 2$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the six sugar residues denoted $\mathbf{A}-\mathbf{F}$ (vide supra) were assigned using a number of different 2D NMR experiments. A series of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-TOCSY experiments were utilized with increasing mixing times from 10 to 110 ms giving information on the spin-systems of sugar residues. All of the anticipated onebond ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-correlations were identified in the proton-

Fig. 4 Component analysis of the EPS from ST1 by ${ }^{1} \mathrm{H}$ NMR showing a EPS-SMB hydrolysate, b D-galactose-SMB, and \mathbf{c} d-glucose-SMB
decoupled ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HSQC-spectrum (Fig. 3), i.e., 42 from the six hexoses. Methylene and methine groups were differentiated by a multiplicity-edited HSQC-experiment revealing that the methylene groups had ${ }^{13} \mathrm{C}$ chemical shifts $<69.7 \mathrm{ppm}$ whereas for the methine groups $\delta_{\mathrm{C}}>69.7$ (cf. Fig. 3). The assignment process was aided by a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ H2BC experiment in which two-bond ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-correlations are observed and by a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ experiment where ${ }^{2} J_{\mathrm{C}, \mathrm{H}}$ and ${ }^{3} J_{\mathrm{C}, \mathrm{H}}$ mediated correlations may be observed (Fig. 5). Resonance overlap and small ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ coupling constants, e.g. in galacto-pyranose $J_{\mathrm{H} 4, \mathrm{H} 5}<1 \mathrm{~Hz}$, hamper the resonance assignments. Therefore, a 2D NOESYHSQC TILT NMR experiment (Kupče et al. 2005) was performed in which ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-correlations are observed via through-space interactions but ${ }^{13} \mathrm{C}$ frequency-labeled using a tilt angle $\alpha= \pm 15^{\circ}$ (Fig. 6). The 3D NOESY-HSQC spectrum where the F_{1} and F_{3} dimensions correspond to ${ }^{1} \mathrm{H}$ frequencies and the F_{2} dimension that corresponds to ${ }^{13} \mathrm{C}$ is projected onto a tilted plane $\mathrm{F} * / \mathrm{F}_{3}$ which allows overlapping cross-peaks to be resolved. Subsequently, the pure proton and carbon frequencies can be obtained by trigonometric functions (vide supra) and consequently the corresponding chemical shifts of the cross-peaks can be derived. For example, the cross-peak from H 1 in residue \mathbf{B} to H 4 in residue \mathbf{E} (cf. Fig. 6) has the same carbon-13 frequency as C 1 in \mathbf{B}. In an analogous way the cross-peak from H 1 in \mathbf{C} to H 3 in \mathbf{E} is ${ }^{13} \mathrm{C}$-labeled by C 1 in \mathbf{C}. The TILT experiment, which is an order of magnitude faster than the 3D NOESY-HSQC experiment, resolved the remaining ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift assignments for the

Fig. 5 Overlay of a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{H} 2 \mathrm{BC}$ spectrum (blue) and a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum (red) of the EPS from ST1. Cross-peaks from the latter experiment are annotated showing, inter alia, interresidue ${ }^{3} J_{\mathrm{C}, \mathrm{H}}$ correlations. The asterisk denotes artifacts from the HDO resonance

ST1 EPS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of the six sugar residues are given in Table 1.

The assignments of sugars (D -glucose and D -galactose) to A-F were performed based in particular on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts. Of the β-linked hexopyranosides, having ${ }^{1} J_{\mathrm{C} 1, \mathrm{H} 1}$ values of 162 or 163 Hz , residues \mathbf{C}, \mathbf{D} and \mathbf{F} correspond to d-glucose whereas residue \mathbf{E} stems from d-galactose. Residue \mathbf{B} corresponds to a d-glucose residue that is α-linked since ${ }^{1} J_{\mathrm{C} 1, \mathrm{H} 1}=172 \mathrm{~Hz}$ (Bundle and Lemieux 1976). That residue \mathbf{A} has a furanose ring-form is evident from its ${ }^{13} \mathrm{C}$ chemical shifts of the anomeric carbon C1 as well as C4 (Gorin and Mazurek 1975; Ritchie et al. 1975; Linnerborg et al. 1997). This conclusion was corroborated by a three-bond correlation observed in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMBC spectrum between H 1 and C 4 in residue \mathbf{A} (Fig. 5). The ${ }^{1} J_{\mathrm{C} 1, \mathrm{H} 1}$ coupling constant does not readily distinguish the α - from the β-anomeric configuration. Additionally, the ${ }^{3} J_{\mathrm{H} 1, \mathrm{H} 2}$ coupling constant is not resolved but the width at half peak-height indicates a small value. β-Linked D -galactose in a furanoid ring form, i.e. β-D-Galf, is present in many bacterial polysaccharides, whereas β-DGlcf has only been reported once, to the best of our knowledge, as a constituent in a lipopolysaccharide from Erwinia amylovora T which also contained an α-D-Galp residue in the repeating unit (Ray et al. 1987). A comparison of the ${ }^{13} \mathrm{C}$ chemical shifts of residue \mathbf{A} to those of the methyl glycosides of β-D-Glcf and β-d-Galf (Beier et al. 1980) indicates that the deviation, based on the chemical shifts from C2 to C6, is larger for the former, $\approx 1.2 \mathrm{ppm} /$

Fig. 6 A 2D NOESY-HSQC TILT NMR experiment of the EPS from ST1 with a tilt angle of $\alpha=+15^{\circ}$ (top) and $\alpha=-15^{\circ}$ (bottom)
resonance, than for the latter, $\approx 0.6 \mathrm{ppm} /$ resonance. Therefore, residue \mathbf{A} is assigned to β - $\mathrm{D}-\mathrm{Gal}$, resulting in two galactose and four glucose residues in the repeating unit of the EPS, consistent with results from the component analysis (vide supra).
${ }^{13} \mathrm{C}$ NMR glycosylation shifts, i.e., the difference in chemical shifts to those of the corresponding monosaccharide, are highly indicative of the substitution position(s) in an oligo- or polysaccharide (Söderman et al. 1998); they have a magnitude of 5-10 ppm and are shifted to a higher chemical shift. The resonances from the anomeric carbons are shifted by $6.2-8.5 \mathrm{ppm}$ in the ST1 EPS. The substituted carbons show glycosylation shifts in the range 4.88.6 ppm . Small positive and negative glycosylation shifts will also be present at non-substituted positions. Thus, residues \mathbf{C} and \mathbf{F} are 6 - and 4 -substituted, respectively, residues \mathbf{D} and \mathbf{E} are 4,6- and 3,4-disubstituted, respectively, which necessitates branching at these residues and consequently residues A and \mathbf{B} are terminal groups. The sugar residues, ring forms, substitution patterns and their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of the ST1 EPS are summarized in Table 1.

The sequence of sugar residues making up the repeating unit of the EPS were determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-NOESY experiments and the correlations are compiled in Table 2 (cf. also Figs. 5 and 6). From this information the primary structure of the hexasaccharide

Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (ppm) at $25^{\circ} \mathrm{C}$ of the EPS from ST1 ${ }^{\text {a }}$

Sugar residue		1	2	3	4	5	6
β-D-Galf-($1 \rightarrow$	A	5.06 [4.6] $^{\text {b }}$	4.13	4.08	4.01	3.84	3.67, 3.72
		$(-0.16)^{\text {c }}$	(0.11)	(-0.02)	(-0.04)	(0.03)	
		108.45 \{175\}	81.75	77.40	83.60	71.53	63.49
		(6.25)	(-0.61)	(0.46)	(0.42)	(-0.16)	(-0.16)
α-D-Glcp-($1 \rightarrow$	B	4.92 [8.3] ${ }^{\text {b }}$	3.51	3.77	3.54	4.25	3.85, 3.85
		(-0.31)	(-0.03)	(0.05)	(0.12)	(0.41)	
		99.96 \{172\}	72.49	73.32	69.71	72.10	60.69
		(6.97)	(0.02)	(-0.46)	(-1.00)	(-0.27)	(-1.15)
$\rightarrow 6)$ - β-D-Glcp-($1 \rightarrow$	C	4.66 [7.5]	3.25	3.50	3.39	3.62	3.84, 4.21
		(-0.01)	(0.00)	(0.00)	(-0.03)	(0.16)	
		105.28 \{163\}	74.17	76.30	70.65	75.83	69.66
		(8.44)	(-1.03)	(-0.46)	(-0.06)	(-0.93)	(7.82)
$\rightarrow 4,6)-\beta$-d-Glcp-($1 \rightarrow$	D	4.60 [7.5]	3.37	3.61	3.72	3.73	3.82, 4.12
		(-0.07)	(0.12)	(0.11)	(0.30)	(0.27)	
		103.94 \{163\}	73.65	75.06	79.15	74.27	66.68
		(7.10)	(-1.55)	(-1.70)	(8.44)	(-2.49)	(4.84)
$\rightarrow 3,4)-\beta$-d-Galp-($1 \rightarrow$	E	4.54 [7.5]	3.77	3.88	4.27	3.80	3.84, 3.91
		(0.01)	(0.32)	(0.29)	(0.38)	(0.15)	
		103.79 \{162\}	71.44	81.40	76.01	76.60	60.98
		(6.42)	(-1.52)	(7.62)	(6.32)	(0.67)	(-0.86)
$\rightarrow 4)-\beta$-D-Glcp-($1 \rightarrow$	F	4.51 [7.5]	3.37	3.65	3.69	3.61	3.85, 4.00
		(-0.16)	(0.12)	(0.15)	(0.27)	(0.15)	
		103.31 \{162\}	73.65	75.03	79.29	75.66	60.69
		(6.47)	(-1.55)	(-1.73)	(8.58)	(-1.10)	(-1.15)

${ }^{\text {a }} J_{\mathrm{H} 1, \mathrm{H} 2}$ are given in Hz in square brackets. ${ }^{\mathrm{b}}$ Signal width at half-height. ${ }^{\mathrm{c}}$ Chemical shift differences compared to the corresponding monosaccharides are given in parenthesis

Table 2 Interresidue correlations observed in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-NOESY spectra of the EPS from ST1

Residue	Anomeric atom	Residue	HMBC	NOE
A	H1	D	C6	H6a
B	H1	E	C4	H4, H6a (w), H6b (w)
B	C1	E	H4	
C	H1	E	C3	H3
C	C1	E	H3	
D	H1	C	C6	H6a
E	H1	F	C4	H4, H6a (w), H6b (w)
E	C1	F	H4	
F	H1	D	C4	H4
F	C1	D	H4	
(w) $=$ weak NOE				

repeating unit is determined having two terminal sugar residues, two branching sugar residues being part of the backbone of the polymer, and two sugar residues in the polymer backbone. The repeating unit structure is shown in Fig. 7. The 4,6 -disubstituted residue \mathbf{D} is substituted in an identical way as in the EPS from LGG (Landersjö et al.
2002). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical (glycosylation) shifts of residue \mathbf{A} in the ST1 EPS are indistinguishable (within differences in experimental conditions) from those of the terminal β-D-Gal f residue in the EPS from LGG providing further credence to the assignment of this sugar as D-galactose. In addition, the glycosylation shifts of residues \mathbf{A} and \mathbf{F} in the two polysaccharides are highly similar confirming the structure at this branch point even though the disubstituted sugar is D-glucose in the present case but N -acetyl-D-glucosamine the EPS form LGG.

The preparation of the EPS for NMR spectroscopy studies resulted in a highly viscous sample as mentioned above. In order to determine its molecular mass by NMR translational diffusion experiments the sample was diluted about one order of magnitude to a concentration of $\sim 0.6 \mathrm{mg} / \mathrm{mL}$, i.e., until no further change was obtained in the translational diffusion constant. It was determined from five NMR experiments giving $D_{\mathrm{t}}=3.50 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$ with a standard deviation of $0.38 \times$ $10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The molecular weight was calculated using a relationship developed for polysaccharides (Viel et al. 2003) which resulted in $M_{w}=61.9 \mathrm{kDa}$. Since there are six

Fig. 7 Structure of the EPS from ST1 in CFG-notation (top) and standard nomenclature (bottom)
hexoses in the repeating unit of the EPS the M_{w} corresponds to an EPS having 64 repeating units. The M_{w} determination from NMR was compared to that measured by dynamic light scattering (DLS) on the same sample. From ten DLS experiments $D_{\mathrm{t}}=3.81 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$ with a standard deviation of 0.34×10^{-11} $\mathrm{m}^{2} \mathrm{~s}^{-1}$. This result corresponds to $\mathrm{M}_{\mathrm{w}}=51.9 \mathrm{kDa}$. Thus, the M_{w} determinations agree within one standard deviation and underscore that NMR spectroscopy can be used with confidence and in conjunction with DLS if available.

In conclusion, all aspects of the primary structure determination of the EPS of S. thermophilus ST1 were possible to address by NMR spectroscopy. The highly viscous NMR sample still resulted in NMR spectra of high quality that permitted the structural elucidation of the hexasaccharide repeating unit consisting of glucose and galactose residues. Furthermore, use of efficient NMR techniques based on parallel acquisition and TILT experiments was valuable in the structural analysis. In addition, the molecular mass determination of the EPS was complemented with dynamic light scattering experiments, revealing good agreement with the result from NMR spectroscopy. Knowledge of the primary EPS structure now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.

Acknowledgments This work was supported by grants from the Swedish Research Council (VR), The Knut and Alice Wallenberg Foundation, Carl Tryggers Stiftelse för Vetenskaplig Forskning, Magn. Bergvalls Stiftelse, the Academy of Finland (Project number 210653) and the Sino-Finnish Cooperative Project (2006DFA32620). The Swedish NMR Centre at Göteborg University is thanked for access to a high-field spectrometer. We thank Dr. Jesper Lind for assistance with the DLS measurements.

References

Baumann H, Tzianabos AO, Brisson J-R, Kasper DL, Jennings HJ (1992) Structural elucidation of two capsular polysaccharides
from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry 31:4081-4089
Beier RC, Mundy BP, Strobel GA (1980) Assignment of anomeric configuration and identification of carbohydrate residues by 13C nmr. 1. Galacto- and glucopyranosides and furanosides. Can J Chem 58:2800-2804
Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407-423
Bubb WA, Urashima T, Fujiwara R, Shinnai T, Ariga H (1997) Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydr Res 301:41-50
Bundle DR, Lemieux RU (1976) Determination of anomeric configuration by NMR. Methods Carbohydr Chem 7:79-86
Damberg P, Jarvet J, Gräslund A (2001) Accurate measurement of translational diffusion coefficients: a practical method to account for nonlinear gradients. J Magn Reson 148:343-348
De Vuyst L, Zamfir M, Mozzi F, Adriany T, Marshall V, Degeest B, Vaningelgem F (2003) Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. Int Dairy J 13:707-717
Degeest B, Vaningelgem F, Laws AP, De Vuyst L (2001) UDP-Nacetylglucosamine 4-epimerase activity indicates the presence of N -acetylgalactosamine in exopolysaccharides of Streptococcus thermophilus strains. Appl Environ Microbiol 67:3976-3984
Delorme C (2008) Safety assessment of dairy microorganisms: Streptococcus thermophilus. Int J Food Microbiol 126:274-277
Doco T, Wieruszeski J-M, Fournet B, Carcano D, Ramos P, Loones A (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198:313-321
Faber EJ, Zoon P, Kamerling JP, Vliegenthart JFG (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310:269-276
Faber EJ, van den Haak MJ, Kamerling JP, Vliegenthart JFG (2001) Structure of the exopolysaccharide produced by Streptococcus thermophilus S3. Carbohydr Res 331:173-182
Faber EJ, van Kuik JA, Halkes KM, Kamerling JP, Vliegenthart JFG (2002a) A novel open-chain nononic acid linked by an ether bond to glucose as a polysaccharide constituent. Chem Eur J 8:4498-4505
Faber EJ, van Haaster DJ, Kamerling JP, Vliegenthart JFG (2002b) Characterization of the exopolysaccharide produced by Streptococcus thermophilus 8 S containing an open chain nononic acid. Eur J Biochem 269:5590-5598
Folkenberg DM, Dejmek P, Skriver A, Guldager HS, Ipsen R (2006) Sensory and rheological screening of exopolysaccharide producing strains of bacterial yogurt cultures. Int Dairy J 16:111-118
Gorin PAJ, Mazurek M (1975) Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can J Chem. 53:1212-1223
Jansson P-E, Kenne L, Widmalm G (1989) Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-n.m.r. data. Carbohydr Res 188:169-191
Kupče E, Freeman R (2005) Resolving ambiguities in two-dimensional NMR spectra: the 'TILT' experiment. J Magn Reson 172:329-332
Kupče E, Nishida T, Widmalm G, Freeman R (2005) Resolving overlap in two-dimensional NMR spectra: nuclear Overhauser effects in a polysaccharide. Magn Reson Chem 43:791-794
Kupče E, Freeman R, John BK (2006) Parallel acquisition of twodimensional NMR spectra of several nuclear species. J Am Chem Soc 128:9606-9607

Landersjö C, Yang Z, Huttunen E, Widmalm G (2002) Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3:880-884
Lemoine J, Chirat F, Wieruszeski J-M, Strecker G, Favre N, Neeser J-R (1997) Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Appl Environ Microbiol 63:3512-3518
Linnerborg M, Wollin R, Widmalm G (1997) Structural studies of the O-antigenic polysaccharide from Escherichia coli O167. Eur J Biochem 246:565-573
Marshall VM, Laws AP, Gu Y, Levander F, Rådström P, De Vuyst L, Degeest B, Vaningelgem F, Dunn H, Elvin M (2001a) Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Lett Appl Microbiol 32:433-437
Marshall VM, Dunn H, Elvin M, McLay N, Gu Y, Laws AP (2001b) Structural characterisation of the exopolysaccharide produced by Streptococcus thermophilus EU20. Carbohydr Res 331:413-422
Miller JA, Neuzil EF (1982) Modern experimental organic chemistry. D.C. Heath and Company, MA, pp 569-571

Mills R (1973) Self-diffusion in normal and heavy water in the range $1^{\circ}-45^{\circ}$. J Phys Chem 77:685-688
Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F (2001) Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol 28:219-226
Nordmark E-L, Yang Z, Huttunen E, Widmalm G (2005) Structural studies of an exopolysaccharide produced by Streptococcus thermophilus THS. Biomacromolecules 6:105-108
Petersen BO, Vinogradov E, Kay W, Würtz P, Nyberg NT, Duus JØ, Sørensen OW (2006) H2BC: a new technique for NMR analysis of complex carbohydrates. Carbohydr Res 341:550-556

Purwandari U, Shah NP, Vasiljevic T (2007) Effects of exopoly-saccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yogurt. Int Dairy J 17:1344-1352
Ray TC, Smith ARW, Wait R, Hignett RC (1987) Structure of the sidechain of lipopolysaccharide from Erwinia amylovora T. Eur J Biochem 170:357-361
Ritchie RGS, Cyr N, Korsch B, Koch HJ, Perlin AS (1975) Carbon-13 chemical shifts of furanosides and cyclopentanols. Configurational and conformational influences. Can J Chem 53:1424-1433
Söderman P, Jansson P-E, Widmalm G (1998) Synthesis, NMR spectroscopy and conformational studies of the four anomeric methyl glycosides of the trisaccharide D-Glcp-($1 \rightarrow 3$)-[D-Glcp$(1 \rightarrow 4)]-\alpha$-D-Glc p. J Chem Soc, Perkin Trans 2:639-648
Stingele F, Neeser J-R, Mollet B (1996) Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680-1690
Vaningelgem F, Van der Meulen R, Zamfir M, Adriany T, Laws AP, De Vuyst L (2004) Streptococcus thermophilus ST 111 produces a stable high-molecular-mass exopolysaccharide in milk-based medium. Int Dairy J 14:857-864
Viel S, Capitani D, Mannina L, Segre A (2003) Diffusion-ordered NMR spectroscopy: a versatile tool for the molecular weight determination of uncharged polysaccharides. Biomacromolecules 4:1843-1847
York WS, Hantus S, Albersheim P, Darvill AG (1997) Determination of the absolute configuration of monosaccharides by 1 H NMR spectroscopy of their per-O-(S)-2-methylbutyrate derivatives. Carbohydr Res 300:199-206

[^0]: Presented in part at the FASEB Summer Research Conferences: Microbial Polysaccharides of Medical/Agricultural and Industrial Importance, Industrial Applications, Carefree, AZ, USA, June 15-20, 2008.
 E. Säwén • G. Widmalm (\boxtimes)

 Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
 e-mail: gw@organ.su.se
 E. Huttunen • X. Zhang

 Department of Food Technology, University of Helsinki, 00014 Helsinki, Finland
 Z. Yang

 Center of Agro-food Technology, Northeast Agricultural Research Center of China, 130124 Changchun, Jilin, People's Republic of China

